navmenu

spacer


Celebrating the independent kiwi spirit of invention.


Original list by Ian Mander started 1 February 2008. Added to this site (Aqualab) 26 November 2008. Database released 27 May 2009.
Please note that the date mentioned below that the database code was last updated is not the date the data itself was last updated.

Driver List
Database code 16 December 2019
Footnotes 10 August 2016

Step-up drivers
Low voltage step-down drivers

Mains drivers
User interface & PWM drivers

Drivers not yet added
3 March 2012
Links
28 February 2012

Why use a driver?
20 February 2010

Driver types overview
15 September 2010


LED Driver List – step-up LED drivers (boost and boost/buck)

An O-ring, Tailcap & Silicone Grease List is also available.

Video Foundry/Aqualab does not sell any of these drivers. Links are provided to resellers. The short URL for this list is www.videofoundry.co.nz/driverlist. See the bottom of the page for my email address. If you're just a spam bot looking for fodder, spam the hell out of these spammers' addresses: spammer address 1, spammer address 2, spammer address 3. They deserve a taste of their own spam.

Note that some sellers are more reliable than others. Inclusion of particular resellers in this list is not an endorsement of them as businesses. Note that Fasttech closed in December 2022 but the drivers are still included for reference.

Jump to: Footnotes & Instructions | Schottky diodes.

65 drivers found. Listed by price.

Driver Name

SKU or catalogue #

Retailer

Price (US$)
(shipping incl unless
otherwise stated)

Driver Type

Driver Purpose

Vin min-max
(DC except where noted)
Number of LEDs (or LED dice) in series
min-max
Battery Suitability Efficiency
min-max

Output Current
(off the shelf)

Max current (with just a resistor modification)

Number of Modes Size
(diameter except where noted)

Notes

Show only SKUs containing

from $
to $

Stock level


from
to

Driver can power

LEDs incl with driver

    (instead of off-the-shelf current)
from
to

from
to
 

Joule Thief

joule

bigclive.com

$0.00 Make your own from scrap - fun!

Boost driver

0.3-1.5 V 1 Use with single alkaline only, not NiMH 30-75%

 

1   depends on the components you find For driving a single 5mm LED from an alkaline AA or AAA. Do not use with NiMH - the Joule Thief will suck it dry and leave it gasping or permanently dead. There's a handy instruction video on YouTube.
 
Some changes to the basic circuit can increase efficiency and stablise output. (Love the ASCII diagrams - they're cool!)
 
FWIW an open circuit Joule Thief can output over 50 volts, so they can be used for all sorts of things, like charging other batteries.

Nanjg 102, 1xAA boost

1124802

FastTech

$1.84

Boost driver

0.9-1.5 V 1 1x AA/AAA  

550 mA

1 13 mm Claimed output current of 550 mA does not fit with reviewer who says input current with an AAA Eneloop was 800 mA.

1W boost driver

128096

DealExtreme

$2.00

Boost driver

0.9-1.5 V 1 1x AA  

350 mA

1 15 mm Unknown input voltage range; assumed to work with single AA cell. Unknown regulation quality. Probably a larger version of DX sku.128084.

Nanjg 103, 1xAA boost

1138200

FastTech

$2.14

Boost driver

0.9-1.5 V 1 1x AA/AAA  

500 mA

1 17 mm Output voltage up to 4 V.

TR-0032
(1.5~4.2 V, 3 W driver for Cree)

25505

DealExtreme

$2.19

Boost driver

0.9-3.2 V
(claimed 1.5-4.2 V)
1 ideal for 2xAA,
NOT suited for 3x NiMH or Li-ion
77-89%

630 mA
constant current

Can be modified to 1000 mA

1 17 mm Constant current boost driver with either PAM2801 (max 350 mA) or PAM2803 (max 1000 mA) or J1JD (?) chip. Latest version outputs 630 mA; originally set to 380 mA. Claimed variable output current depending on input voltage, 600 mA (with 1.5 Vin) to 1.2 A (with 4.2 Vin), which makes me wonder what on Earth DX means by "Fully regulated circuit design"; those figures obviously aren't. However, testing by Hilarion showed perfectly stable current output from 1.2-3.2 V; very nice, although only 360 mA. Output current is determined by a sense resistor with 95±5 mV feedback voltage. Thus 0.25 Ω sense resistor as supplied in 2009 gives 380 mA, 0.15 Ω as presently supplied gives 630 mA, 0.1 Ω gives 950 mA (measured 900 mA at ~80% efficiency). Efficiency is said to drop horribly with input current > 2 A.

As pointed out in this thread there are no components to buck voltage as implied, so it would actually be direct drive when Vin is greater than Vf of your LED.

1-2xAA boost driver

1127402

FastTech

$2.22

Boost driver

0.9-3.6 V 1 1-2x AA/AAA  

800 mA

1 17 mm Very much non-constant output; 1.5 V in gives 500 mA out, or 3.6 V in gives 800 mA out, but claimed to be constant current at 1.8-3.6 V. The talk of linear regulator in the product description just shows they don't know what they're talking about. The review mentions it's quite inefficient.

(4-7)x1W MR16 driver

1110709

FastTech

$2.29

MR16 (boost) driver

12-12 V DC; also works with AC 4-7 12 V AC or DC 82-91%

330 mA

1 24 mm x 19 mm x 12 mm Output current is a guess. Input/output inconsistencies - buyer beware. Is it a boost driver or a buck/boost driver? One user claims it uses the XL6001 driver chip (datasheet - not presently linked from their web site), which offers PWM dimming. Efficiency figures from that datasheet.

AAA boost driver

128084

DealExtreme

$2.70 for 2

Boost driver

0.9-1.5 V 1 1x AAA 46%

360 mA

1 12 mm Unknown input voltage range. Unknown regulation quality; output current claimed to be 350-400 mA. Probably a smaller version of DX sku.128096.

(4-7)x1W MR16 driver

245843

DealExtreme

$2.72
(up from $2.70)

MR16 (boost) driver

12-17 V DC; also works with AC 4-7 12 V AC or DC  

300 mA

1 37 mm x 19 mm x 12 mm Output voltage 12-23 V. Apparently a boost driver, so it might not work well with 4 LEDs if running on 12 V AC.

Nanjg 110

p-482

Intl Outdoor Store

$2.85

Boost driver

0.9-3.7 V 1 1-2x AA
1x CR123A
1x LiFePO4
 

950 mA
constant current

1 17 mm Constant current output with 2*AA. About 450 mA with 1*AA. No polarity protection.

350~700mA LED boost driver

128274

DealExtreme

$2.90 for 2
(sold out and/or discontinued)

Boost driver

1.5-3.0 V 1 2x AA  

350 mA

1 15 mm Output current said to be 350-700 mA, probably depending on input voltage. It's unclear if it'll run with a single AA cell.

AK-007

50526

DealExtreme

$3.10

Boost driver

0.8-1.5 V 1 1x AA
1x AAA
 

300 mA

1 12 mm - two boards in double layer 3 mode; high (100%), low (15%), strobe (9 Hz). Incomplete specs - output current is just a guess and probably varies significantly depending on input voltage.

5x1W MR16 driver

LX0209X

Focalprice

$3.29

MR16 (boost) driver

12-12 V DC; also works with AC 5   88%

300 mA

1 70 mm x 17 mm x 7 mm Unknown driver operation. Assumed to be boost because of the claimed ability to drive 5 LEDs from 12 V DC, but claimed output voltage is 12 V. AC rectifier built in. Efficiency is claimed minimum. The stated length probably includes the LED leads. Duh.

JR-LED 5W

321658

DealExtreme

$3.33

Boost driver and buck driver

3.0-4.2 V 1

1 LED included

1x Li-ion  

900 mA

1 20 mm Unknown regulation method; the inductor implies boost and/or buck.

One warm white LED included.

1xAA boost

CNQ001405

CN Quality Goods

$3.90 + shipping

Boost driver

0.9-1.5 V 1 1x AA
1x AAA
 

500 mA

1 14 mm 5 modes; high, medium, low, strobe, SOS.

1x AA Boost Driver

p-616

Intl Outdoor Store

$3.97
For 1-2: + shipping
(sold out and/or discontinued)

Boost driver

0.9-1.5 V 1 1x AA  

500 mA

1 13 mm Driver removed from site.

5 modes (memory unknown) using PWM at 100 kHz; high, medium (150 mA), low (20 mA), strobe, SOS.

DL-008

106797

DealExtreme

$4.00

Boost driver

0.9-4.2 V 1 1x AA,
1x 14500 Li-ion
 

420 mA

1 17 mm 5 modes with memory; high, medium (30%), low (3%), strobe (9 Hz), SOS. Claims to be suitable for 1x 14500 cell, but doesn't say if it's in direct drive with that input, relying on the voltage drop of a small Li-ion cell.

10W boost driver

1110708

FastTech

$4.37

Boost driver

12-12 V 6-10 12 V  

330 mA

1 47 mm x 22 mm x 14 mm Output voltage 24-34 V. Output current is assumed; claimed current draw is bogus.

1-2xAA/1xLi-ion boost driver

1143101

FastTech

$4.74

Boost driver

1.0-4.2 V 1 1-2x AA/AAA  

1000 mA

1 17 mm x 8 mm high - two boards in double layer Unclear specs and the single review and two forum threads about the driver seem to be the blind leading the blind - buyer beware.

5 LED boost driver

CNQ001376

CN Quality Goods

$4.90 + shipping

Boost driver

7.0-14 V 5    

900 mA

1 20 mm Single mode, 700-900 mA. The top of the driver chip has really been attacked.

TR-0055C boost driver

1127401

FastTech

$4.95

Boost driver

6.0-8.4 V 5 2x Li-ion  

700 mA

1 25 mm See DX sku.26106 which is cheaper and has more support from knowledgeable customers.

12W MR16 boost driver

207555

DealExtreme

$5.18
(up from $4.80)

MR16 (boost) driver

12-17 V DC; also works with AC 5-12 12 V AC or DC 88%

300 mA
constant current

1 47 mm x 24 mm x 14 mm Output voltage 16-42 V.

20W boost driver

409261

DealExtreme

$5.49

Boost driver

12-24 V DC; also works with AC 10 12 V, 24 V DC  

600 mA

1 61 mm x 26 mm x 19 mm Output voltage 30-36 V.

20W boost driver

1320700

FastTech

$5.97

Boost driver

12-24 V 9-11 12 V or 24 V DC 95%

650 mA

1 52 mm x 31 mm x 20 mm Output voltage 30-36 V. Includes heatsink.

Nanjg 20

4735

DealExtreme

$6.46 for 3

Boost driver

0.8-3.3 V
(old version 1.5-4.2 V)
1   41-86%

970 mA

1 17 mm (not 16 mm) Boost driver (uses 2106F regulator chip). Reliable test data is hard to find and is complicated by people using different wiring methods. Some results are here and here but in the latter test, as pointed out, the output voltage dipping while the output current still climbs does seem a bit hard to believe. Discussion thread here.

Tip 1: It seems that modifying the set resistor to give a lower output current (max 500 mA) is a good idea.

Tip 2: Different wiring methods may give different efficiency figures.

1xAA boost

CNQ001406

CN Quality Goods

$6.50 + shipping

Boost driver

0.9-1.5 V 1 1x AA NiMH  

800 mA

1 17 mm 5 modes in two groups; high, medium (50%), low (5%), strobe, SOS.

5.4-24W boost driver

386355

DealExtreme

$6.61

Boost driver

12-24 V DC; also works with AC 7-25 12 V, 24 V AC/DC  

300 mA

1 80 mm x 25 mm x 18 mm Output voltage 18-60 V (with 12 V input), 30-80 V (with 24 V input). Note that this voltage represents a shock hazard - use with caution. Heatsink included.

(4-9)x1W boost driver

399820

DealExtreme

$6.87 for 3

MR16 (boost) driver

12-17 V DC; also works with AC 4-9 12 V AC/DC  

300 mA

1 28 mm x 18 mm x 11 mm Output voltage 12-30 V.

Madmax Lite

327

Sandwich Shoppe

$8.00 + shipping

Boost driver

0.8-4.5 V 1   76-88%

200 mA
constant current

1 14 mm Boost regulator. Unknown output regulation. Maximum power output ~0.75 W.

Madmax Plus

181

Sandwich Shoppe

$8.00 + shipping

Boost driver

0.8-5.0 V 1   76-88%

700 mA
constant current

1 14 mm Boost regulator. Unknown output regulation. Maximum power output ~1.5 W (Plus).

1.5 V, 300 mA Boost Driver

4451

DealExtreme

$8.51 for 5
(sold out and/or discontinued)

Boost driver

1.5-3.0 V 1 1-2x AA 40-80%

300 mA

1 15 mm ~300 mA output with one fresh AA, ~530 mA with two AA cells. Accurate testing has been difficult, presumably because of the high switching frequency of the board.

MicroPuck

02009...

LED Supply

$9.99 + shipping

Boost driver and buck driver

0.8-3.0 V
(as boost; 4.0-8.0 V as buck)
1-2   62-89%

500 mA

1 12 mm x 8 mm x 7 mm Can be used as either a buck, or boost, or buck/boost driver - see the Application Notes for connection diagrams and other info. Not a constant current output; they claim this is a design feature to mimic the light dropoff of an incandescent bulb. I'm not convinced. Maximum 8 V output. Can be used in parallel. Efficiency as a boost driver claimed 70-82% (measured at 64-78% in a test with an XP-G here), as a buck driver 82-89%; as a buck/boost driver 62-72%. The datasheet doesn't claim an IP rating but does say "The 2009A is encapsulated by an insulating epoxy and is resistant to harsh environments and moisture."

Available in three versions with nominal outputs of 350, 400 (error in window title bar) and 500 mA.

BL-DCS2(20W)

253117

DealExtreme

$10.00
(sold out and/or discontinued)

Boost driver

12-24 V 8-12 12 V or 24 V DC  

600 mA
constant current

1 84 mm x 29 mm x 20 mm Output voltage 24-38 V.

20W boost driver

66388

DealExtreme

$10.50
(sold out and/or discontinued)

Boost driver

12-12 V 4-6    

1300 mA

1 78 mm x 38 mm x 21 mm Output voltage 14-20 V. Includes driver heatsink.

BL-3F(8-25W), low voltage AC boost driver

253114

DealExtreme

$10.50
(sold out and/or discontinued)

Boost driver

12-24 V DC; also works with AC 8-25 12 V or 24 V AC or DC  

300 mA
constant current

1 109 mm x 29 mm x 20 mm Output voltage 24-80 V. Note that this voltage represents a shock hazard - use with caution.

30W boost driver

152437

DealExtreme

$10.60

Boost driver

12-28 V 9-11 12 V or 24 V automotive  

1000 mA

1 60 mm x 36 mm x 14 mm Output voltage 30-36 V. Includes driver heatsink.

20W boost driver

152228

DealExtreme

$10.60

Boost driver

12-24 V 9-11 12 V or 24 V automotive  

650 mA

1 60 mm x 36 mm x 20 mm Output voltage 30-36 V. Includes driver heatsink.

700 mA, 2.5 W

4382

DealExtreme

$10.66 for 5
(sold out and/or discontinued)

Boost driver

3.0-3.0 V 1 2x AA 70%

700 mA

1 16 mm Version 4: As of April 2010 buck drivers are being sent instead of boost drivers. Buyer beware. Update: Product is sold out.

Version 3: As of August 2008 there seems to be a new version which may have different components and may not cope with anything over 3.0 V.

Version 2: Boost driver using Zetec C300 control chip, no capacitors. 100~700 mA output, dependent on input voltage. Test data discussion (in which various people point out the test data is wrong).

Version 1: 15 mm diameter.

20W boost driver

102674

DealExtreme

$11.30

Boost driver

9-15 V 5 3x Li-ion,
12 V automotive
 

1300 mA

1 69 mm x 50 mm x 20 mm Output voltage 16-18 V. Includes driver heatsink.

30W boost driver

102663

DealExtreme

$11.40

Boost driver

12-34 V 10-12 12 V or 24 V automotive  

950 mA

1 75 mm x 50 mm x 20 mm Output voltage 35-38 V. Includes driver heatsink.

20W boost driver

LX0313X

Focalprice

$11.53

Boost driver

12-30 V 9-11 12 V or 24 V automotive  

650 mA

1 75 mm x 40 mm x 25 mm Output voltage 32-36 V. Includes driver heatsink.

30W boost driver

103735

DealExtreme

$12.20

Boost driver

9-15 V 5 3x Li-ion,
12 V automotive
 

1800 mA

1 70 mm x 50 mm x 19 mm Output voltage 16-18 V. Includes driver heatsink.

40W boost driver

102540

DealExtreme

$12.30

Boost driver

12-34 V 10-12 12 V or 24 V automotive  

1300 mA

1 69 mm x 50 mm 19 mm Output voltage 35-38 V. Includes driver heatsink.

50W boost driver

102650

DealExtreme

$12.40

Boost driver

12-34 V 10-12 12 V or 24 V automotive  

1500 mA

1 69 mm x 50 mm x 20 mm Output voltage 35-38 V. Includes driver heatsink.

Badboy

179

Sandwich Shoppe

$13.00 for all except $16.50 for 750 mA and 1 A versions + shipping

Boost driver

1.6-6.0 V 1-2   85-89%

1000 mA
constant current

1 14 mm Boost regulator. Vin must be less than Vout. Maximum Iin 1.5 A. Constant current output, board available as a "blank" (add set resistor), or preset to 300 mA, 400 mA, 500 mA, 750 mA, or 1000 mA. Must always have a load connected.

JR-DC-50W

100809

DealExtreme

$13.91
(up from $13.30)

Boost driver

12-24 V 8-11 12V automotive  

1500 mA

1 70 mm x 50 mm x 20 mm Output voltage 26-36 V. Includes driver heatsink.

30W 12V boost driver

81843

DealExtreme

$13.99
(sold out and/or discontinued)

Boost driver

12-12 V 5-6    

1800 mA

1 76 mm x 37 mm x 11 mm Output voltage 16-20 V. "Compatible with 5 x 6 or 6 x 6 LED plate". Includes driver heatsink.

BB Nexgen

491

Sandwich Shoppe

$15.00 - $16 + shipping

Boost driver

2.0-6.0 V 1   80-91%

1000 mA
constant current

1 14 mm Boost regulator, but apparently needs to be started with Vin between 3.4 V and Vf to start the full current regulation mode, otherwise it starts in safe mode, which is 1.5 A maximum input current. Constant current output, maximum 1 A. Board available as a "blank" (add set resistor), or preset to 400 mA, 500 mA, 750 mA and 1000 mA. Must always have a load connected.

60W boost driver

LX0315X

Focalprice

$15.16

Boost driver

12-30 V 9-11 12 V or 24 V automotive  

1800 mA

1 70 mm x 50 mm x 20 mm Output voltage 32-26 V. Includes driver heatsink.

GD

961

Sandwich Shoppe

$18.00 - $20 + shipping

Boost driver and buck driver

1.8-5.4 V 1   85-93%

1000 mA
constant current

1 14 mm Buck/boost regulator. Constant current output, board available as a "blank" (add one or two SMT set resistors), or preset to 500 mA, 750 mA, or 1000 mA. Maximum output voltage 5.4 V. Must always have a load connected.

Shark

721

Sandwich Shoppe

$20.00 + shipping
(sold out and/or discontinued)

Boost driver

2.7-20 V 1-5 "Great for use in Mag C & D." 77-93%

980 mA
constant current

1 19 mm This product has vanished from the retailer's web site.

Boost regulator, although Wayne says "The Shark has a hard time at voltages below ~4V". Vin must be less than Vout, and should be >1/3 Vout (preferably >1/2 Vout). Maximum input current 4 A, efficient up to 2 A. Regulates on voltage or current, output current adjustable from 50-980 mA (or greater by changing set resistor, although that would remove load protection) at maximum 26 V. Open circuit protected. Some questions are answered in this forum thread.
 
Shark vs MaxFlex forum thread.

Fatman

fatman

TaskLED

$22.00 + shipping
(sold out and/or discontinued)

Boost driver

2.7-12 V 1-4   80-96%

1000 mA
constant current

1 20 mm Boost regulator. Vin must be less than Vout. User adjustable constant current at 3-16 V, up to 1000 mA. Optional external adjustment. Must always have a load connected.

Mini Boost

101

PCB Components

$23.00 (approx)
€16.95 (actual)

Boost driver

2.7-18 V 1-12   93%

200 mA

1 25 mm x 12 mm x 4 mm Maximum output voltage 38 V. Maximum input current 500 mA. Output current set by solder jumpers in 9 steps from 10 mA to 200mA. Dimming by PWM signal. Soft start. Maximum claimed efficiency listed here; typical efficiency for any particular configuration unknown.

Suitable for Cree MP-L.

Blue Shark

1136

Sandwich Shoppe

$25.00 + shipping

Boost driver

2.7-25 V 1-10 "Great for use in Mag C & D and fixed lighting applications."  

980 mA
constant current

1 19 mm Boost regulator. Maximum input current 4 A, said by manufacturer to be still efficient >3 A. Regulates on voltage or current, output current adjustable from 50-980 mA (or greater by changing set resistor, although that would remove load protection) at maximum 32 V. Includes copper heatsink; improved thermal performance and higher output voltage over standard Shark.
 
I note that Wayne here recommends new buyers to get three.

BoostPuck

04015

LED Supply

$29.99 + shipping

Boost driver

5.0-28 V 4-12   85-97%

350 mA
constant current

1 21 mm x 21 mm x 11 mm Maximum output voltage 48 V. Input voltage must be at least 3 V lower than output voltage. Dimmable with external potentiometer (0-100%) and on board trim adjustment (75-125%). 7 pin SIP interface for PCB mounting; wiring harness optional extra. Output has short circuit protection (15 seconds) and open circuit protection.
 
There is a version without the on-board trim adjustment for a little lower cost (the page is wrong where it claims it does have it).

Hyperboost v1.0

hboost

TaskLED

$40.00 + shipping
(sold out and/or discontinued)

Boost driver

8.0-50 V 3-23   88-92%

1400 mA
constant current

1 36 mm Boost driver, input voltage must be less than output voltage. Maximum output 80 V. Adjustable output current limit. Input current less than 5 A for optimal performance. Has open circuit and reverse polarity protection. (Note that if turned on while open circuit, output will rise to 80 V - shock hazard.)

Previous version (pre Feb 2010) maximum 1.3 A output.

Hyperboost V2.0

hboost

TaskLED

$40.00 + shipping

Boost driver

8.0-50 V 5-23    

3200 mA

1 33 mm Output voltage 80 V maximum. Note that this voltage represents a shock hazard - use with caution. PWM input. Open circuit protection. Technical info here.

Led Senser v2

69

PCB Components

$44.00 (approx)
€30.95 (actual) + shipping

Boost driver

2.6-18 V 1-10   92%

1330 mA
constant current

1 32 mm Input current up to 3 A. Soft start output, current adjustable with solder bridge (350 mA, 700 mA, 1000 mA) up to 35 V. External PWM input. Claimed efficiency is maximum; typical efficiency unknown.

CCHIPO v1.2

cchipo

TaskLED

$45.00 + shipping
(sold out and/or discontinued)

Boost driver

4.0-30 V 2-13   84-92%

2000 mA
constant current

1 63 mm x 48 mm Boost regulator. Vin must be less than Vout. Maximum 5 A input. User adjustable constant current output up to 2 A or 48 V (45 W max). Optional external adjustment. Open circuit protected, but if doing so, LED(s) must not be connected until output has discharged from 48 V.

L33.2

L332

Lux-RC

$46.78 + shipping

Boost driver

4.8-9.5 V 3

3 LEDs included

2x Li-ion 78-96%

1060 mA
constant current

1 20 mm Driver board with combined LEDs - triple Cree XP-G R5 (cool white).

A new 1.55 A version is undergoing testing, as discussed here.

L33.2E

L332-E

Lux-RC

$46.78 + shipping

Boost driver

4.8-9.5 V 3

3 LEDs included

2x Li-ion 78-96%

1060 mA
constant current

1 20 mm Driver board with combined LEDs - triple Cree XP-E R3 (cool white).

L33.2N

L332-N

Lux-RC

$46.78 + shipping

Boost driver

4.8-9.5 V 3

3 LEDs included

2x Li-ion 78-96%

1060 mA
constant current

1 20 mm Driver board with combined LEDs - triple Cree XP-G R4 (neutral white).

LED Senser Xtreme

107

PCB Components

$48.00 (approx)
€34.95 (actual) + shipping

Boost driver

6.0-30 V 3-16   97%

2050 mA
constant current

Can be modified to 3000 mA

1 28 mm x 16 mm high Output current set by solder jumpers in 15 steps from 200 mA to 2050 mA. Tested up to 3 A output. Soft start function. Maximum input current 7 A. Maximum output voltage ~55 V. Maximum output power >100 W. Maximum claimed efficiency listed here; typical efficiency for any particular configuration unknown. Thermal protection. External PWM input and external shut down.

L33.2-Z

L332-Z-Beta

Lux-RC

$67.00 + shipping

Boost driver

5.5-9.5 V 3

3 LEDs included

2x Li-ion  

1550 mA
constant current

1 20 mm Beta version. Driver board with combined LEDs - triple Cree XP-G R5 (cool white).

L33.2N-Z

L332N-Z-Beta

Lux-RC

$67.00 + shipping

Boost driver

5.5-9.5 V 3

3 LEDs included

2x Li-ion  

1550 mA
constant current

1 20 mm Beta version - even the name hasn't been standardised yet (N-Z or Z-N). Driver board with combined LEDs - triple Cree XP-G R4 (neutral white).

Notes

Footnotes & Instructions

  • Video Foundry/Aqualab does not sell any of these drivers. Links are provided to resellers.
  • Use the pop-up menus, check boxes, etc, in the second row of the table to filter the results.
  • Click on the links in the titles in the top row of the table to order the results by that information.
  • Results of searches can be bookmarked because all the search parameters are contained in the URL. (You can delete the parameters you don't want - for example, http://www.videofoundry.co.nz/ianman/laboratory/research/driverlist.php?sku=26110 brings up just that driver.)
  • All prices in US$ (except where dual prices are listed in US$ and € for some European retailers).
  • All driver boards from DealExtreme and KaiDomain include shipping.
  • Information is unfortunately not guaranteed to be correct. any updates, corrections, omissions, etc.
  • However, please don't bother sending me an email to tell me about your company's LED products. It will be treated as spam. I really don't like spam, and SpamCop is busy enough as it is without having to process your email as well. Putting "Re" in the front of your spam's subject does not make it any less likely your spam will be sent to SpamCop.
  • Recommended drivers highlighted in green. They have a good combination of price, features and efficiency.
  • Drivers no longer available (sold out or backordered) are highlighted in grey.
  • Recommended drivers no longer available are highlighted in a darker green.
  • Drivers listed at those resellers as "Backordered" etc for more than a month are deemed to be discontinued (although I'm happy to later be proven wrong).
  • Don't connect drivers that have capacitors across their outputs to LEDs while the driver is powered. An explanation (on CPF) why not.
  • No mains driver will be completely waterproof. Those that are water resistant mostly have an IP rating (eg, IP67).

Notes on AMC7135 linear regulator (click to expand/contract)

The AMC7135 (datasheet) is a linear regulator, which means it acts like a variable resistor changing its value to try to keep the current constant. Like a resistor, any dropped voltage is burnt off as heat. Boards include a polarity protection diode and can easily be PWM-driven for lower modes.

Vin must be at least 0.12 V above Vf of LED to stay in regulation, although they drop out of regulation quite gracefully, not suddenly. The graph in the AMC7135 datasheet (Jan 2006) has the 0.1 and 1 volt vertical lines missing. Each AMC7135 provides constant current, about 1/3 amp (actually 300-380 mA depending on particular version; I've generally assumed 330-335 mA for above listings). Boards come with one to eight AMC7135s, and single mode up to 20 mode. Boards can be paralleled to give greater output, or connected with one multimode board controller providing the modes for several boards.

The AMC7135 is very efficient when input voltage is close to output voltage but not particularly good when input voltage is significantly higher. Average efficiency for 3x NiMH or 1x Li-ion can be well over 90% with an LED with the right Vf. Test results and discussion for 3 and 4 chip boards.

Since the AMC7135 just burns off excess input volts as heat, the more volts fed into them the hotter they'll get. One guy claimed that his got so hot they slid right off the board (ie, >183-190 °C melting range of 60/40 solder). The AMC7135 has built-in thermal protection (which will cause dropouts or a flickering effect if it gets too hot) but the multi-mode control chips used on the multi-mode boards are much less rugged. (And here.) If using with an input voltage above 4.5 V or so you can expect them to get hot!

To get multiple modes typical microcontrollers used are the Atmel ATtiny13 (or 13A or 13V) and the Microchip PIC12F629. These both have a 5.5 V maximum, while the AMC7135 linear regulator has a 6.0 V maximum. This means that multimode drivers will have a slighty lower maximum voltage than single mode boards.

Tip 1: To get reliable operation at low voltages, especially with only one AMC7135 chip being used, you may need to short out (and maybe remove) the polarity protection diode(s)*. This is because the AMC7135 in series with a polarity protection diode needs a minimum 2.7 V + 0.6 V (silicon diode) = 3.3 V to stay in regulation. The Vf of LEDs at 330-350 mA can easily be quite a bit lower than 3.3 V so will not be running in regulation. Note that if a germanium or Schottky diode was used the drop could be as low as 0.3 V instead of 0.6 V.

* However, I found with one multimode board this caused the board to go unstable (don't know exactly why) but I found that inserting a small value resistor instead of the diode was enough to get the driver stable again. Because the drive current through that point in the circuit is so low (6 mA for mine) there's very little voltage drop across the resistor - much less than across the diode - so it still serves the purpose of saving ~0.6 V.

Tip 2: If the input voltage is too high you may be able to use another LED in series with the board to drop the voltage - it beats burning it all off as heat. (The set current is <1 mA for single mode boards so both LEDs will get practically identical current. Diagrams and much discussion of use with multiple Seoul P7s and multi-mode boards.) More than one extra LED appears to be not a good idea for use with the lower modes of multi-mode boards since the Vf of the extra LEDs decreases too much at the low current to protect the driver from the battery voltage. (Many of the multi-mode boards have a capacitor on the output.) Flashing modes appear unsuited to this technique.

AMC7135-based driver options are discussed here, or an inexpensive multimode AMC7135 driver here.

Notes on PT4105 and alternative driver chips (PT4115, AX2002, CL6807) (click to expand/contract)

PT4105 (datasheet):

Production of this driver IC - as used in the Kennan and MR16 base drivers described above - has been terminated. The manufacturer doesn't even have a publicly displayed link to the datasheet any more, which is the weirdest part of it. This from Micro Bridge (now removed from their site; try to ignore the punctuation and spacing):

The PT4105 which the manufacture has already officially stopped producing,and the subsequent instead item is the PT4115,AX2002 and FP6101 Also,The PT4115,AX2002 and FP6101 has superior performance over ,wider input range and more current than the PT4105.

PT4115 (datasheet):

While I look forward to the PT4115 being available in low cost LED drivers (by its numbering the apparent successor to the PT4105), I note that it needs an input of at least 8 V (and has under voltage lock out at 6.8 V), so isn't nearly as well suited to low voltage torches as the PT4105 was. It will, however, have its uses for 3x Li-ion torches and automotive purposes. The chip has a DIM pin which gives it the ability to very easily be dimmed. Efficiency is about 80-82% for 1 LED, up to 93% for 3 LEDs, and apparently up to 98% for 7 LEDs. Maximum output current 1.2 A.

AX2002 (datasheet):

This driver chip from AXElite looks extremely interesting. It will accept a minimum 3.6 V input and has a maximum switched current of 2.5 A, although it tends to overheat at more than 2 A. It includes thermal protection (140°C), over current protection, short circuit protection, and has a PWM control circuit. Its efficiency is good too, with an output of 2 A @ 5 V it's an impressive 91% efficient (with 12 V input). Driving a Cree XR-E at 1 amp will give an efficiency of about 87-88% (with 12 V input). Efficiency is not quite as good at low currents with a single LED, dropping under 80%.

AX2002 drivers can also easily be configured as a constant voltage power supply. The load is connected straight to ground and the 0.25 V reference voltage is used to control a voltage divider with a couple of moderately high value resistors to give a fixed multiple of 0.25V at VOUT.

For example, for 5 V, 5 = 20 * 0.25, so a 10 kΩ resistor is placed between ground and FB (the feedback pin), and a 190 kΩ resistor between FB and VOUT (making the total of those resistors between VOUT and ground of 200 kΩ).

When used in this way, to give stability the current through the resistors probably just needs to be comfortably greater than the feedback pin bias current of (0.1 µA typical, 0.5 µA maximum). If two exact resistor values for the voltage divider are not available it's easiest to use a single resistor for the sense resistor (between ground and FB), while the other value (between FB and VOUT) uses two resistors in series or parallel. For series, one of those two resistors will be as close as possible to the desired value, and just under it, while the other will be a much smaller resistor to tweak the total resistance up for the output voltage wanted. For parallel, the main resistor is just over the actual value wanted while the other resistor with about ten times the resistance tweaks the total resistance down. If that resistor is getting into megaohms you should probably revise your values.

Some AX2002 drivers (such as DX 3256 sadly no longer an AX2002 driver) come with a 1 A Schottky diode, which will need to be changed if increasing the output current over 1 A. See the Schottky diode notes below for links.

AX2003 (datasheet):

The AX2002 also has a big brother, the AX2003, which has a maximum switched current specification of 4 amps – easily enough to drive a Seoul P7, or a Cree MC-E with the dice in parallel. No drivers with the AX2003 are presently known. The spec sheets of the AX chips could do with a few more graphs showing how constant the output current is, etc.

FP6101 (datasheet): Not an LED driver.

CL6807 (datasheet):

Chinese LED driver, 1 A maximum output current, 6-35 V input, 0.1 V high side sense voltage. Claims to be able to provide up to 35 W output power. Dimmable with 0.5-2.5 V PWM signal.

So there are some nice driver chip options, but it still leaves a gap of a high efficiency, really low voltage, low current driver.

Notes on Schottky diodes (click to expand/contract)

Schottky diodes are diodes that have a low voltage drop across them. 0.3 V is a typical figure, compared to around 0.60-0.65 V for a typical silicon diode. This makes Schottky diodes good for rectifiers and LED drivers where high efficiency is required. Drivers that use the AX2002 such as DX 3256 can easily be modified for higher output current but the Schottky diode needs to be replaced if the output current is to exceed 1 A.

Inexpensive Schottky diodes are available from these sources:



Celebrating the independent kiwi spirit of invention.

Contact:
Return to ianman HOME | Back to Aqualab Home | Return to TOP
Inventions: Super Soaker Backpack | Air Cannon | Car Interior Lighting | LED Torch


* This would have been an ad.

When you buy stuff from Asian sellers:
Please don't buy stuff from a country in the middle of intimidating its neighbours.
spacer